metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊2Dic5, C5⋊5C2≀C4, (C2×C20).3D4, (C23×C10)⋊3C4, (C2×D4).7D10, C20.D4⋊2C2, C22≀C2.1D5, C22⋊C4⋊1Dic5, C23⋊Dic5⋊2C2, (D4×C10).5C22, (C22×C10).14D4, C23.5(C5⋊D4), C23.1(C2×Dic5), C10.40(C23⋊C4), C2.4(C23⋊Dic5), C22.12(C23.D5), (C5×C22⋊C4)⋊7C4, (C2×C4).5(C5⋊D4), (C5×C22≀C2).1C2, (C22×C10).38(C2×C4), (C2×C10).158(C22⋊C4), SmallGroup(320,94)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊2Dic5
G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=e5, ab=ba, eae-1=ac=ca, ad=da, faf-1=abcd, bc=cb, ebe-1=bd=db, fbf-1=bcd, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=e-1 >
Subgroups: 350 in 94 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C23, C10, C10, C22⋊C4, C22⋊C4, M4(2), C2×D4, C2×D4, C24, Dic5, C20, C2×C10, C2×C10, C23⋊C4, C4.D4, C22≀C2, C5⋊2C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C2≀C4, C4.Dic5, C23.D5, C5×C22⋊C4, C5×C22⋊C4, D4×C10, D4×C10, C23×C10, C20.D4, C23⋊Dic5, C5×C22≀C2, C24⋊2Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, Dic5, D10, C23⋊C4, C2×Dic5, C5⋊D4, C2≀C4, C23.D5, C23⋊Dic5, C24⋊2Dic5
(1 40)(2 36)(3 32)(4 38)(5 34)(11 37)(12 33)(13 39)(14 35)(15 31)
(1 40)(2 36)(3 32)(4 38)(5 34)(6 24)(7 30)(8 26)(9 22)(10 28)(11 37)(12 33)(13 39)(14 35)(15 31)(16 23)(17 29)(18 25)(19 21)(20 27)
(1 14)(2 15)(3 11)(4 12)(5 13)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 17)(7 18)(8 19)(9 20)(10 16)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 16)(2 20)(3 19)(4 18)(5 17)(6 13)(7 12)(8 11)(9 15)(10 14)(21 37 26 32)(22 36 27 31)(23 35 28 40)(24 34 29 39)(25 33 30 38)
G:=sub<Sym(40)| (1,40)(2,36)(3,32)(4,38)(5,34)(11,37)(12,33)(13,39)(14,35)(15,31), (1,40)(2,36)(3,32)(4,38)(5,34)(6,24)(7,30)(8,26)(9,22)(10,28)(11,37)(12,33)(13,39)(14,35)(15,31)(16,23)(17,29)(18,25)(19,21)(20,27), (1,14)(2,15)(3,11)(4,12)(5,13)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,17)(7,18)(8,19)(9,20)(10,16)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,20)(3,19)(4,18)(5,17)(6,13)(7,12)(8,11)(9,15)(10,14)(21,37,26,32)(22,36,27,31)(23,35,28,40)(24,34,29,39)(25,33,30,38)>;
G:=Group( (1,40)(2,36)(3,32)(4,38)(5,34)(11,37)(12,33)(13,39)(14,35)(15,31), (1,40)(2,36)(3,32)(4,38)(5,34)(6,24)(7,30)(8,26)(9,22)(10,28)(11,37)(12,33)(13,39)(14,35)(15,31)(16,23)(17,29)(18,25)(19,21)(20,27), (1,14)(2,15)(3,11)(4,12)(5,13)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,17)(7,18)(8,19)(9,20)(10,16)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,20)(3,19)(4,18)(5,17)(6,13)(7,12)(8,11)(9,15)(10,14)(21,37,26,32)(22,36,27,31)(23,35,28,40)(24,34,29,39)(25,33,30,38) );
G=PermutationGroup([[(1,40),(2,36),(3,32),(4,38),(5,34),(11,37),(12,33),(13,39),(14,35),(15,31)], [(1,40),(2,36),(3,32),(4,38),(5,34),(6,24),(7,30),(8,26),(9,22),(10,28),(11,37),(12,33),(13,39),(14,35),(15,31),(16,23),(17,29),(18,25),(19,21),(20,27)], [(1,14),(2,15),(3,11),(4,12),(5,13),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,17),(7,18),(8,19),(9,20),(10,16),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,16),(2,20),(3,19),(4,18),(5,17),(6,13),(7,12),(8,11),(9,15),(10,14),(21,37,26,32),(22,36,27,31),(23,35,28,40),(24,34,29,39),(25,33,30,38)]])
41 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 5A | 5B | 8A | 8B | 10A | ··· | 10F | 10G | ··· | 10R | 10S | 10T | 20A | ··· | 20F |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 20 | ··· | 20 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 40 | 40 | 2 | 2 | 40 | 40 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | ··· | 8 |
41 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | - | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D5 | Dic5 | D10 | Dic5 | C5⋊D4 | C5⋊D4 | C23⋊C4 | C2≀C4 | C23⋊Dic5 | C24⋊2Dic5 |
kernel | C24⋊2Dic5 | C20.D4 | C23⋊Dic5 | C5×C22≀C2 | C5×C22⋊C4 | C23×C10 | C2×C20 | C22×C10 | C22≀C2 | C22⋊C4 | C2×D4 | C24 | C2×C4 | C23 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 4 | 8 |
Matrix representation of C24⋊2Dic5 ►in GL6(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 39 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 39 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 39 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
19 | 40 | 0 | 0 | 0 | 0 |
25 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 |
7 | 32 | 0 | 0 | 0 | 0 |
1 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1,0,0,0,0,0,0,40,0,0,0,0,0,39,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[19,25,0,0,0,0,40,16,0,0,0,0,0,0,1,40,0,0,0,0,0,40,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[7,1,0,0,0,0,32,34,0,0,0,0,0,0,0,0,1,40,0,0,0,0,0,40,0,0,1,0,0,0,0,0,0,1,0,0] >;
C24⋊2Dic5 in GAP, Magma, Sage, TeX
C_2^4\rtimes_2{\rm Dic}_5
% in TeX
G:=Group("C2^4:2Dic5");
// GroupNames label
G:=SmallGroup(320,94);
// by ID
G=gap.SmallGroup(320,94);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,219,675,297,1684,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=e^5,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c*d,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f^-1=b*c*d,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations